State of the Art & Practice in Activity-Based Modeling

Part 2: Software & hardware architecture
Topics

- Software architecture
 - Data structures
 - Algorithms
 - Distributed computing
 - Outputs and visualization
- Hardware architecture
 - ARC ABM example
CT-RAMP: Software Design Concept

SANDAG
- UEC spreadsheets
- Market definitions

CT-RAMP:
- Model Flow
- Model Components
- Inputs/Outputs

Common Modeling Framework:
- Matrix Classes
- LogitModel
- Utility Expression Calculator
Common Modeling Framework

- A library of tools for building transport and land-use models
- Written in the Java programming language
- Open source (Apache public license)
- Collaborative
- Currently used by over 30 clients
Why Java?

- Java is a fully Object-Oriented Programming (OOP) Language
- Java is easy to learn and use
- Java encourages good software design
- Java natively supports multi-threading
- Java is architecture-neutral
OOP – Data Structures

Synthetic Population

Household 1
- Attributes
 - Household Size
 - Autos Owned
 - Number of Workers
 - Household Income
 - Household Location
 - Composition

Person 1
- Attributes
 - Age
 - Gender
 - Employment Status
 - Student Status
 - Work Location
 - School Location

Tour 2

Person 3

Tour 3
- Attributes
 - Number of Stops
 - Tour Mode
 - Persons on Tour
 - Primary Destination

Choice Models

Tour 4

Tour 5
Interaction between models and data

HouseholdDataManager

Person 1
- Attributes: Age, Gender, Employment Status, Student Status, Work Location, School Location

Household 1
- Attributes: Household Size, Autos Owned, Number of Workers, Household Income, Household Location, Composition

Person 3

Tour 2
- Attributes: Number of Stops, Tour Mode, Persons on Tour, Primary Destination

Tour 3

Tour 4

Tour 5

ChoiceModelApplication.java
- UtilityExpressionCalculator.java (Model specification, external data inputs, and utility terms)

DecisionMakingUnit.java (Relevant household/person attributes, other internal data)

LogitModel.java (Logit calculations, probabilities, get choice)

NYBPM Users Group Meeting, June 8, 2011
CMF Tools – Matrix Package

- Read/write to/from all major software (TransCAD, Cube, Emme, etc)
- Matrix calculations
- Random access (skims in memory, sparse matrices)
- N-dimensional matrix, iterative proportional fitting
CMF Tools – Model Package

• Create and apply discrete choice models
• Flexible in specification of nesting structures
• “Interface” pattern used – any object can be an alternative
• Extensive debugging features
/** A simple mode choice model */

public class MyModeChoiceModel {

 public runModel() {
 // instantiate modes
 DriveAlone driveAlone = new DriveAlone();
 Transit transit = new Transit();

 // instantiate model
 LogitModel model = new LogitModel;

 // add modes to model
 model.add(driveAlone);
 model.add(transit);

 // calculate utilities
 double logsum = model.getUtility();

 // choose Mode
 Mode chosenMode = (Mode) model.chooseAlternative();
 }
}

LogitModel.add() takes a Mode

getUtility() solves logit model, returns logsum

Uses Monte Carlo to select alternative according to logit probabilities and returns it.
CMF Tools – Calculator Package

- Activity-based models typically utilize many logit choice models, some with many alternatives
- Traditional software relies on hard-coded utility equations
 - Inefficient - Programmer responsible for coding utility equations
 - Inflexible – Requires programmer to change equations and recompile
 - Imperfect – Only one person typically reviews equations, which increases probability of bugs
- Utility Expression Calculator (UEC) developed to overcome these limitations
CMF Tools – Calculator Package

- The UEC is a Java package that reads and interprets an Excel workbook containing a logit model specification and its inputs.
- The UEC solves the utility equations for a given decision-maker.
- The UEC “opens up” the model specification – anyone can edit the spreadsheets, change inputs & parameters, check that the model is properly specified, etc.
Table Data: CSV files of zonal, household, or person data

<table>
<thead>
<tr>
<th>No</th>
<th>Type</th>
<th>Format</th>
<th>File</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ZONE</td>
<td>CSV</td>
<td>%ProjectDirectory%MechanicalParkingCost.csv</td>
</tr>
</tbody>
</table>

Matrix Data: Trip tables or level-of-service skims in zone-zone format (TPPLUS, TRANSCAD, EMME2, and/or BINARY formats)

(Sparse matrices can be compressed in memory)
UEC - Model Page - Tokens

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Model</td>
<td>HBW_ModelChoice</td>
<td></td>
<td>Decision-making-unit</td>
<td>h</td>
<td>All</td>
<td>22</td>
<td>NL</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>No.</td>
<td>Token</td>
<td>Description</td>
<td>Filter</td>
<td>Formula for variable</td>
<td>Index</td>
<td>All1</td>
<td>All2</td>
<td>All3</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>c_iHt</td>
<td>In-vehicle time coefficient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>c_parksoc</td>
<td>Auto access time coefficient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>c_shwalk</td>
<td>Short walk time coefficient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>c_trip</td>
<td>Long walk time coefficient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>c_wait</td>
<td>Transfer wait time coefficient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>c_shwaik</td>
<td>Short walk access time coefficient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>c_lgwalk</td>
<td>Long walk access time coefficient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>c_cost</td>
<td>Cost coefficient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>c_bikemike</td>
<td>Bike mode coefficient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>c_trfwalk</td>
<td>Transfer penalty for walk access transit modes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>c_trftrans</td>
<td>Transfer penalty for drive access transit modes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>c_pdbwtrid</td>
<td>CBD walk-transit coefficient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>c_pdbwtrdist</td>
<td>CBD drive-transit coefficient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>c_const_trt</td>
<td>Constant for Arterial_BRT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>c_const_pfi</td>
<td>Constant for Urban Plan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>c_bopoc</td>
<td>Auto operating cost (cents)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>walkThreshold</td>
<td>Short/Long walk threshold (minutes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>walkSpeed</td>
<td>Walk speed (miles per hour)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>shortWalkTime</td>
<td>Short walk maximum time (minutes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>longWalkTime</td>
<td>Long walk maximum time (minutes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>walkModeThreshold</td>
<td>Short/Long walk mode threshold (miles)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>bikeSpeed</td>
<td>Bike speed (miles per hour)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NYBPM Users Group Meeting, June 8, 2011
UEC – Model Page - Utilities

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Model</td>
<td>HEM_ModelChoice</td>
<td></td>
<td>Decision making unit</td>
<td>h</td>
<td>Alt: 22</td>
<td>NL: 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>N0</td>
<td>Token</td>
<td>Description</td>
<td>Filter</td>
<td>Formulas for variable</td>
<td>Index</td>
<td>Alt1: Alt2: Alt3: Alt4: Alt5: Alt6: Alt7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>55</td>
<td>N:_Drive single is not available</td>
<td>R_DA_Available=0.10</td>
<td>-999.00</td>
<td>ed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>N:_Drive Alone In vehicle time</td>
<td>DA_Available</td>
<td>0.10_LOV_TIME</td>
<td>100</td>
<td>ed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>N:_Drive Alone Cost</td>
<td>DA_Available</td>
<td>0.10_LOV_DIST * (s_cost_daily_ParkingCost+2.0)</td>
<td>ed</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>N:_Auto shared ride 2_BP path is not available</td>
<td>R_SR_BP_Available=0.10</td>
<td>-999.00</td>
<td>ed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>N:_Shared Ride 2_in_vehicle time</td>
<td>SR_BP_Available</td>
<td>0.10_LOV_TIME</td>
<td>100</td>
<td>ed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>N:_Shared Ride 2_Cost</td>
<td>SR_BP_Available</td>
<td>0.10_LOV_DIST * (s_cost_daily_ParkingCost+2.0)</td>
<td>ed</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>N:_Auto shared ride 2_HOV path is not available</td>
<td>R_SR_HO_Available=0.10</td>
<td>-999.00</td>
<td>ed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>N:_Shared Ride 2_in_vehicle time</td>
<td>SR_HO_Available</td>
<td>0.10_HO_TIME</td>
<td>100</td>
<td>ed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>N:_Shared Ride 2_Cost</td>
<td>SR_HO_Available</td>
<td>0.10_HO_DIST * (s_cost_daily_ParkingCost+2.0)</td>
<td>ed</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>N:_Auto shared ride 2_ BP path is not available</td>
<td>R_SR_BP_Available=0.10</td>
<td>-999.00</td>
<td>ed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>N:_Shared Ride 2_in_vehicle time</td>
<td>SR_BP_Available</td>
<td>0.10_LOV_TIME</td>
<td>100</td>
<td>ed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>N:_Shared Ride 2_Cost</td>
<td>SR_BP_Available</td>
<td>0.10_LOV_DIST * (s_cost_daily_ParkingCost+2.0)</td>
<td>ed</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>N:_Auto shared ride 2_HOV path is not available</td>
<td>R_SR_HO_Available=0.10</td>
<td>-999.00</td>
<td>ed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>N:_Shared Ride 2_in_vehicle time</td>
<td>SR_HO_Available</td>
<td>0.10_HO_TIME</td>
<td>100</td>
<td>ed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>N:_Shared Ride 2_Cost</td>
<td>SR_HO_Available</td>
<td>0.10_HO_DIST * (s_cost_daily_ParkingCost+2.0)</td>
<td>ed</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>N:_Walk_Local is not available</td>
<td>W_WK_LOC_Available</td>
<td>-999.00</td>
<td>ed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>N:_Walk_Local In_vehicle time</td>
<td>W_WK_LOC_Available</td>
<td>0.10_WK_LOC_VT</td>
<td>100</td>
<td>ed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>N:_Walk_Local short_first walk</td>
<td>W_WK_LOC_Available</td>
<td>0.10_WK_LOC_FWT_short_Threshold</td>
<td>ed</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>N:_Walk_Local long_first walk</td>
<td>W_WK_LOC_Available</td>
<td>0.10_WK_LOC_FWT_long_Threshold</td>
<td>ed</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>N:_Walk_Local transfer_walk</td>
<td>W_WK_LOC_Available</td>
<td>0.10_WK_LOC_XWT</td>
<td>ed</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>N:_Walk_Local transfer_penalty</td>
<td>W_WK_LOC_Available</td>
<td>0.10_WK_LOC_XPR</td>
<td>ed</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>N:_Walk_Local fare</td>
<td>W_WK_LOC_Available</td>
<td>0.10_WK_LOC_Fare</td>
<td>ed</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>N:_Walk_Local fare on_street_add_difference</td>
<td>W_WK_LOC_Available</td>
<td>0.10_WK_LOC_Fare</td>
<td>ed</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>N:_Walk_Local short_access_walk</td>
<td>W_WK_LOC_Available</td>
<td>0.10_WK_LOC_ACC_short_Walk_Time</td>
<td>ed</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>N:_Walk_Local long_access_walk</td>
<td>W_WK_LOC_Available</td>
<td>0.10_WK_LOC_ACC_long_Walk_Time</td>
<td>ed</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>N:_Walk_Local short_egress_walk</td>
<td>W_WK_LOC_Available</td>
<td>0.10_WK_LOC_EGR_short_Walk_Time</td>
<td>ed</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>N:_Walk_Local long_egress_walk</td>
<td>W_WK_LOC_Available</td>
<td>0.10_WK_LOC_EGR_long_Walk_Time</td>
<td>ed</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>N:_Walk_Local_waiting_walk</td>
<td>W_WK_LOC_Available</td>
<td>0.10_WK_LOC_WALK</td>
<td>ed</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>N:_Walk_Local_CB_</td>
<td>W_WK_LOC_Available</td>
<td>0.10_WK_LOC_CB</td>
<td>ed</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>N:_Walk_Local_Dist_</td>
<td>W_WK_LOC_Available</td>
<td>0.10_WK_LOC_DIST</td>
<td>ed</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NYBPM Users Group Meeting, June 8, 2011
Threading

Quad-core Intel Box with 4 GB RAM per process

Workplace Location Choice

- Thread 1: households 1-50,000
- Thread 2: households 50,001-100,000
- Thread 3: households 100,001-150,000
- Thread 4: households 150,001-200,000
Distribution

NYBPM Users Group Meeting, June 8, 2011
Grid Computing via the Java Parallel Processing Framework
ABM Outputs

Household Data, Person Data, Tour/Trip List

<table>
<thead>
<tr>
<th>HID</th>
<th>PID</th>
<th>TID</th>
<th>PUR</th>
<th>MOD</th>
<th>SB</th>
<th>SA</th>
<th>OTA</th>
<th>DTA</th>
<th>S1TA</th>
<th>S2TA</th>
<th>TLOR</th>
<th>TLDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>943</td>
<td>987</td>
<td>0</td>
<td>964</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>943</td>
<td>731</td>
<td>856</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>943</td>
<td>952</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>943</td>
<td>565</td>
<td>698</td>
<td>982</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Maps, Graphics

Trip Tables

Assignment

Other Summaries

NYBPM Users Group Meeting, June 8, 2011
ABMVIZ: AB Model Visualization Dashboard

- Developed in Adobe Flex/Flash
- Design goal: Intuitive + Flexible
- Features Queries, Tables, and Lots of Visuals
 - Bar Charts +
 - Four Types of Maps
 - Time Use
 - Tour Tracing
 - Tree Maps
 - Radar Charts
 - Bar Chart
ARC ABM Reporting Database

• Stores ABM Output Tables, Travel Time Skim Data, and Select Inputs By Scenario
 • Around 15 GBs per scenario
 • Around 5–10 scenarios at a time in the DB
 • Can load survey data into DB as a scenario for comparison purposes
• Needs to be fast – not a traditional transactional DB, more a data warehouse
 • Use de-normalized data to avoid millions of joins each time for dynamic visualization dashboard
 • Read-only; minimal rollback features required
 • Parallel query functionality (SQL Server)
 • Needs excellent query caching functionality
• Use ARC Enterprise SQL Server with 4 Licensed Processors
ABMVIZ Queries

Interactive query builder with lots of default queries

Difference alternatives

Edit SQL if desired

Aggregations

Save Tables to Clipboard, Excel
Bar Chart and Map

- Can interactively hide/show bars and redraw plot
- Select field to visualize
- Cycle thru fields and redraw map
- Zoom in/out with “+”/”-“ or mouse wheel
Time Spent Traveling by Income & Person Type

- Low income time spent traveling
- Med income time spent traveling
- High income time spent traveling
- Very high income time spent traveling

Legend:
- Full-time worker
- Part-time worker
- Non-worker
- Retired
- University student
- Student of driving age
- Student of non-driving age
- Child too young for school
Transit Riders by Age – Base vs. Future

NYBPM Users Group Meeting, June 8, 2011
Time Use

- Share of time use by purpose and person type

Can change person type
Tracing of Activities/Tours

Person id= 1018897 type= Full-time worker
Performance Measures with Radar Charts

- Compares independent measures across entities
Special Reports for Pricing

- Number of highway users (persons, vehicles):
 - Toll users:
 - Captive
 - By choice
 - Non-toll users:
 - Captive
 - By choice
- Toll revenue
- Equity analysis

AM Peak Toll Trips by Time Saved
ARC HOV2HOT Conversion Study

Toll Share of Toll-Eligible Trips by Time Saved

NYBPM Users Group Meeting, June 8, 2011
ARC HOV2HOT Conversion Study
Diurnal Distribution of Toll versus Non-Toll Work Tours
ARC ABM Hardware and Software Setup

- Three Windows Server 2003 64bit Machines:
 - Dual Quad Core Intel Xeon X5570 2.93 GHz with Hyper-Threading ⏞ 16 threads
 - 32 GB of RAM
 - Cube Voyager + 8 seat Cube Cluster license

- Total cost ~ $30,000 in 2009
Implementation Design Goals

• Overnight run time ¦ Model Relevance
 • Around 16 hours
 • Requires distribution and threading
 • Model runtime is roughly proportional to population size
 • Network skimming and assignment procedures are still proportional to the squared number of TAZs: ~50% or more of total model runtime

• Commodity hardware ¦ Minimize total lifetime cost
 • Hardware available today from common vendors; reasonably priced

• Easy to Setup and Use ¦ Staff acceptance
 • Not too complicated to setup, run, debug, etc
Distributing and Threading CT-RAMP

- Main Cube script calls the JPPF client to start CT-RAMP
- ~1.76 million households split into 880 tasks of 2000 HHs
- CT-RAMP data managed through:
 - Household Manager – manages all HH and person data into RAM for quick I/O
 - Matrix Manager – reads all the matrix data into RAM for quick I/O
- Run a sample of HHs to save time: 33% – 50% – 100%
- HHs and Persons store a random number seed to avoid random number sequence order of processing problems
- SPEED UP = 9X
ARC ABM Run Times

<table>
<thead>
<tr>
<th>Activity Description</th>
<th>Run Times (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Prep, Truck Model, Initial Skims</td>
<td>33/25</td>
</tr>
<tr>
<td>II Demand with CT-Ramp (33% Sample)</td>
<td>112/24</td>
</tr>
<tr>
<td>Convert Trip Lists to Demand Matrices</td>
<td>170/36</td>
</tr>
<tr>
<td>Highway & Transit Assignment & Skimming</td>
<td>165/36</td>
</tr>
<tr>
<td>II Demand with CT-Ramp (50% Sample)</td>
<td>170/36</td>
</tr>
<tr>
<td>Convert Trip Lists to Demand Matrices</td>
<td>173/75</td>
</tr>
<tr>
<td>Highway Assignment (AM, PM, MD, NT)</td>
<td>437/100</td>
</tr>
<tr>
<td>Total</td>
<td>970/8795</td>
</tr>
</tbody>
</table>

Note: Run times are presented in minutes.

- **No Threading/Distribution** (8 processors, 16GB RAM, 1 Computer)
- **Threaded and Distributed** (24 processors, 48GB RAM, 3 computers)

NYBPM Users Group Meeting, June 8, 2011