1.0 Languages, Expressions, Automata

Alphabet: a finite set, typically a set of symbols.

Language: a particular subset of the strings that can be made from the alphabet.

ex: an alphabet of digits = \{-, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}

a language of integers = \{0, 1, 2, ..., 101, 102, 103, ..., -1, -2, etc.\}

Note that strings such as 2–20 would not be included in this language.

Regular Expression:
A pattern that generates (only) the strings of a desired language. It is made up of letters of the language’s alphabet, as well as of the following special characters:

- () used for grouping
- * repetition
- • concatenation (usually omitted)
- + denotes a choice (“or”).
- λ a special symbol denoting the null string

**Precedence from highest to lowest: () * • +

formal (recursive) definition:
If A is an alphabet, and a ∈ A, then a is a regular expression.

λ is a regular expression.

If r and s are regular expressions, then the following are also regular expressions: r*, r·s = rs, r + s, and (r)

examples: (assume that A = \{a, b\})

- a·b·a (or just aba) matched only by the string aba
- ab + ba matched by exactly two strings: ab and ba
- b* matched by \{ λ, b, bb, bbb,\}
- b(a + ba*)*a (b + λ) matched by bbaaab, and many others

Some convenient extensions to regular expression notation:

- aa = a^2, bbbb = b^4, etc.
- a^+ = a·a* = \{ any string of a’s of positive length, i.e. excludes λ \}
- ex: (ab)^2 = abab ≠ a^2 b^2 , so don’t try to use “algebra”.
- ex: (a+b)^2 = (a+b)(a+b) = aa or ab or ba or bb.
- ex: (a+b)^* any string made up of a’s and b’s.
Examples of regular expressions over \{a, b\}:

- all strings that begin with a and end with b
 \[a (a + b)^* b \]

- all non empty strings of even length
 \[(aa + ab + ba + bb)^* \]

- all strings with at least one a
 \[(a + b)^* a (a + b)^* \]

- all strings with at least two a's
 \[(a + b)^* a (a + b)^* a (a + b)^* \]

- all strings of one or more b's with an optional single leading a
 \[(a + \lambda) b^* \]

- the language \{ ab, ba, abaa, bbb \}
 \[ab + ba + abaa + bbb \quad \text{or} \]
 \[ab (\lambda + aa) + b (a + bb) \quad \text{or} \]
 \[(a + bb) b + (b + aba) a \quad \text{or}? \]

Tips:

- Check the simplest cases
- Check for “sins of omission” (forgot some strings)
- Check for “sins of commission” (included some unwanted strings)

More examples

Find a regular expression for the following sets of strings on \{ a, b \}:

- All strings with at least two b's.
 \[(a + b)^* b (a + b)^* b (a + b)^* \]

- All strings with exactly two b’s.
 \[a^* b a^* b a^* \]

- All strings with at least one a and at least one b.
 \[(a + b)^* (ab + ba) (a + b)^* \]

- All strings which end in a double letter (two a’s or two b’s).
 \[(a + b)^* (aa + bb) \]

- All strings of even length (includes 0 length).
 \[(aa + bb + ab + ba)^* \]
Finite Automata: a particular, simplified model of a computing machine, that is a “language recognizer”:

A finite automaton (FSA) has five pieces:

1. \(S = \) a finite number of states,
2. \(A = \) the alphabet,
3. \(S_i = \) the **start** state,
4. \(Y = \) one or more final or “accept” states, and
5. \(F = \) a transition function (mapping) between states, \(F: S \times A \rightarrow S \).

The transition function \(F \) is usually presented in one of two ways:

- as a table (called a transition table), or
- as a graph (called a transition diagram).

Transition Table (example):

\(A = \{ a, b \}, S = \{ s_0, s_1, s_2 \}, S_i = s_1, Y = \{ s_0, s_2 \} \)

<table>
<thead>
<tr>
<th>current state</th>
<th>current input</th>
<th>(F)</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_0)</td>
<td>(s_0)</td>
<td>(s_2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(s_1)</td>
<td>(s_1)</td>
<td>(s_0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(s_2)</td>
<td>(s_0)</td>
<td>(s_0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of a finite automaton with input aaba and output yes or no]

1.0 Languages, Expressions, Automata
Note that this FSA is:

- **Complete** (no undefined transitions)
 - Not
 - Or

- **Deterministic** (no choices)
 - Not

“Skeleton Method” - a useful solution technique in limited cases:

- The “skeleton” is a sequence of states assuming legal input.
- Construct the skeleton, presume that no additional states will be needed.
- The FSA must be **complete and deterministic**: for \(A = \{ a, b \} \), every state has exactly two arcs leaving it, one labeled “a” and one labeled “b”.

example (skeleton): All strings containing abaa
Examples
Assume \(A = \{ a, b \} \). Construct the following automata which:

1. Accepts strings of the form \((a+b)^*\)

2. Accepts \(\lambda \) only.

3. Accepts strings which begin with \(a \)

4. Accepts strings containing ‘aa’ (skeleton method)
5. All words containing at least two a’s

4. All words containing exactly two a’s

Equivalence of Regular Expressions and Finite-State Automata

1. For every regular expression “R”, defining a language “L”, there is a FSA “M” recognizing exactly L.

2. For every FSA “M”, recognizing a language “L”, there is a regular expression “R” matching all the strings of L and no others.
 (we will prove this later)

Question: is there a FSA that can recognize \{ \lambda, ab, aabb, aaabbb, \ldots \} ??

Answer: No, because we need to “remember” how many a’s have been seen to verify that there are as many b’s. Since an FSA can only have a finite number of states there cannot be enough states to count the a’s.

We need a more powerful kind of recognizer... that is, a grammar.