Final Design Review
Comparator

BY
CHINTAN VIBHAKAR
OUTLINE

• Comparator Basic Function
• Architecture
• Sims w/o Parasitics
• Sims with Parasitics
• Comparison
• Complete Design sims with Parasitics
• Conclusion
Comparator Basics

I/P PVREFby4 NVREFby4

<table>
<thead>
<tr>
<th></th>
<th>A1</th>
<th>B1</th>
<th>MSB</th>
<th>LSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/P < -0.25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-0.25< I/P<0.25</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>I/P > 0.25</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

A1 – Upper Comp P Out
B1 – Lower Comp P Out
-A1, B1 given to sub-DAC
-MSB & LSB given to Digital Decode
TEST BENCH FOR
SIMULATION
Comparators making decision on negedge of P1 adv
Settling Time = 2.47 ns
LOCK OUT ON POSEDGE OF P2 adv
SIMS With Parasitics
Comparators making decision on negedge of P1 adv

Comparators making decision on negedge of P1 adv
Settling Time = 2.55 ns
LOCK OUT ON POSEDGE OF P2 adv
COMPARISION
SIMS RESULTS FOR DIFFERENT CORNERS
WITH and W/O PARASITICS

<table>
<thead>
<tr>
<th></th>
<th>5.5V</th>
<th></th>
<th>5.0V</th>
<th></th>
<th>4.5V</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0°C</td>
<td>27°C</td>
<td>85°C</td>
<td>0°C</td>
<td>27°C</td>
<td>85°C</td>
</tr>
<tr>
<td>TT</td>
<td>2.56</td>
<td>2.63</td>
<td>2.79</td>
<td>2.41</td>
<td>2.47</td>
<td>2.64</td>
</tr>
<tr>
<td></td>
<td>2.57</td>
<td>2.64</td>
<td>2.82</td>
<td>2.43</td>
<td>2.55</td>
<td>2.70</td>
</tr>
<tr>
<td>SS</td>
<td>2.75</td>
<td>2.78</td>
<td>2.91</td>
<td>2.68</td>
<td>2.82</td>
<td>2.79</td>
</tr>
<tr>
<td></td>
<td>2.70</td>
<td>2.75</td>
<td>2.90</td>
<td>2.71</td>
<td>2.72</td>
<td>2.90</td>
</tr>
<tr>
<td>FF</td>
<td>2.12</td>
<td>2.13</td>
<td>2.16</td>
<td>2.00</td>
<td>1.98</td>
<td>2.15</td>
</tr>
<tr>
<td></td>
<td>2.12</td>
<td>2.18</td>
<td>2.20</td>
<td>2.02</td>
<td>2.12</td>
<td>2.14</td>
</tr>
<tr>
<td>FS</td>
<td>2.60</td>
<td>2.58</td>
<td>2.84</td>
<td>2.43</td>
<td>2.53</td>
<td>2.68</td>
</tr>
<tr>
<td></td>
<td>2.59</td>
<td>2.65</td>
<td>2.84</td>
<td>2.48</td>
<td>2.61</td>
<td>2.73</td>
</tr>
<tr>
<td>SF</td>
<td>2.51</td>
<td>2.66</td>
<td>2.74</td>
<td>2.38</td>
<td>2.44</td>
<td>2.61</td>
</tr>
<tr>
<td></td>
<td>2.48</td>
<td>2.53</td>
<td>2.76</td>
<td>2.39</td>
<td>2.50</td>
<td>2.66</td>
</tr>
</tbody>
</table>

Note: All dimensions are in ns
TOP LEVEL COMPARATOR

[Diagram of a comparator circuit with labels for VDD, VIN, VREFP, VREFN, VIP, GND, PHI1, PHI2, MSB, LSB, A1, A2, B1, B2, etc.]

[Note: The diagram shows the electrical connections and signals.]
SIMS FOR TOP LEVEL COMPARATOR

I/P > 0.25 V
Hence, A1 = 1, B1 = 1

I/P < -0.25 V
Hence, A1 = 0, B1 = 0
Comp making decision

-0.25 V < I/P < 0.25 V

Hence,
A1 = 0
B1 = 1

I/P < -0.25 V

Hence,
A1 = 0
B1 = 0

I/P > 0.25 V

Hence,
A1 = 1
B1 = 1
-0.25 V < I/P < 0.25 V
Hence,
A1 = 0 B1 = 1
MSB = 0 LSB = 1

I/P > 0.25 V
Hence,
A1 = 1 B1 = 1
MSB = 1 LSB = 0

I/P < -0.25 V
Hence,
A1 = 0 B1 = 0
MSB = 0 LSB = 0
Conclusion

• My design meets all the specification with the Parasitics.
THANK YOU
Corner Case 2 (1mv Diff w/o para)
Corner Case 2 (1mv Diff with para)