ME156: Heating and Air Conditioning Systems
Fall 2006

Instructor: Tim Marbach, Ph.D.
E-Mail: TMarbach@csus.edu
Phone: (916) 278-6089
Office: Riverside Hall 4038
Office Hours: Tuesday 1:30-2:30, Wednesday 10:00-11:30

Course Goals

By the end of this course, everyone will be able to:

1. Explain important ideas and concepts of Heating and Air Conditioning Systems.
2. Formulate, solve, and analyze real-world HVAC problems with a methodological, systematic approach.
3. Connect the principles and techniques learned in this course with other subjects and utilize these principles and techniques to solve multi-disciplinary engineering problems.
5. Value HVAC and recognize its importance in engineering and everyday life.
6. Identify and locate sources of information related to HVAC and apply the information to complete an authentic project.

Course Materials:

Communication:

E-mail: Administrative and content related information will be distributed through e-mail regularly. I will also respond to any of your questions by e-mail.

Office Hours: For more technical/conceptual questions requiring thorough explanation and interaction, please ask me after class or anytime I am in my office. E-mail me to schedule an appointment and I will be more than happy to meet with you.

Website: Assignment descriptions, homework and test solutions and additional resources will be placed on my website. Check it often for important and helpful documents.
Learning Activities:

Tests: Two tests and one comprehensive final.

Individual Homework: Eight (± 2) individual problem-solving homework sets.

Individual RATs: Readiness Assessment Tests (RATs) will be given after important reading assignments. These will be brief multiple choice quizzes to assess your understanding of the reading.

Learning Portfolio: A brief 2-4 page self-reflection of what and how you learned in this course.

Team RATs: After you take a RAT individually, you will then take it as a team.

Team Homework: Four (±1) Challenging homework assignments to be completed in your teams.

Team Project: A team-based, authentic research project (includes a professional memo-style report and an oral presentation).

Team Assessment: You will assess the contributions of each of your teammates and yourself on the team activities.

Policies

Class Attendance: I expect everyone to attend and participate in class. A significant fraction of your grade is composed of in-class activities. Thus, it will be difficult to succeed in the course if you do not come to class.

Make-up Tests: If you miss a test for a legitimate reason (illness requiring medical attention), you must contact me before the test. You must bring documentation of your doctor/hospital visit and take a makeup test.

Homework and Assignments: Assignments are due at the BEGINNING of class. I will accept one late assignment (up to 24 hours late) with no questions asked. Additional late homework is subject to the following:

- 0 to 24 hours late: 66 % credit
- 24 to 48 hours late: 33 % credit
- More than 48 hours late: 0 % credit

Disabilities: If you have a disability and require accommodations, please provide disability documentation to SSWD, Lassen Hall 1008, 916-278-6955. Please discuss your accommodation needs with me after class or during my office hours early in the semester.

Plagiarism: I expect everyone to acknowledge all sources of information when writing. Plagiarism will not be tolerated and will be reported to the University.
Topics to be Covered:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Chapter</th>
<th>Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review of Thermodynamics, Fluid Mechanics and Heat Transfer</td>
<td></td>
<td>1-2</td>
</tr>
<tr>
<td>Mechanical Vapor-Compression Refrigeration Cycles</td>
<td>3</td>
<td>3-4</td>
</tr>
<tr>
<td>Mechanical Vapor-Comp. Refrig. Components/Systems</td>
<td>4</td>
<td>4-5</td>
</tr>
<tr>
<td>Adsorption Refrigeration and Cryogenics</td>
<td>5-6</td>
<td>6</td>
</tr>
<tr>
<td>Psychrometrics</td>
<td>7-8</td>
<td>7</td>
</tr>
<tr>
<td>Test 1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Heat and Mass-Transfer: Direct Contact</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>Heat and Mass-Transfer: Extended Surface Coils</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Human Comfort/Indoor Air Quality</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>Solar Radiation</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>Heating and Cooling Load Calculations: Winter Design</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>Instantaneous Heat Gain/Cooling Load</td>
<td>15-16</td>
<td>14</td>
</tr>
<tr>
<td>Test 2</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Student Presentations</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Final Exam</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Grading Policy

Individual Activities

- Test 1 __%
- Test 2 __%
- Final Exam __%
- Homework __%
- Individual RATs __%
- Learning Portfolio __%

Team Activities

- Team RATs, In-Class Activities and Homework __%
- Team Project and Assessment __%