

Prediction

We may want to predict \(N \) steps ahead from time \(k \) an estimate of the state variables and the output of a system with process and measurement noise. We will use the following notation for prediction:

\[
\hat{X}(k+N) = \phi(k+N,k) \hat{X}(k) \quad (6.1.1)
\]

That is, we compute for \(N \) steps ahead and multiply it by the current kalman filter estimate of the state. We modify the kalman filter (see Figure 5.8) as shown in figure 6.1

Figure 8.1 \(N \)-step prediction.

The predicted error covariance, \(P(k+N) \), does not need to be computed. However, computing \(P(k+N) \) provides an estimate of the prediction error. That is, the diagonal of \(\sqrt{P(k+N)} \) is the root-mean-square (RMS) state-variable error.

Estimation of Prediction Error

We can estimate the prediction error by initialising \(P \) to all zeros and computing:

\[
\hat{x}(k+N|k) = \phi(k+N,k) \hat{x}(k|k)
\]

\[
P(k+N|k) = \phi(k+N,k) P(k|k) \phi^T(k+N,k) + Q(k+N,k)
\]
The plot of rms_e is a plot of the RMS state variable prediction error as a function of the prediction step size. See Example 6.1 and Figure 6.2 in the textbook.

Alternate Kalman Filter Form

There are several different kalman filter forms. One form that is useful if $P(0) = \infty$ (infinite uncertainty). In this case, we compute P_k first. Otherwise, if we compute the otherwise, if we compute the gain K_k first, K_k would "Blow up".

However, using this form, as shown in Figure 6.3 below, more computation time is required.
Stability Considerations

The characteristic polynomial of the discrete kalman filter for a discrete LTI system is

\[
\det[\lambda I - (\Phi_{k-1} - K_k H_k \Phi_{k-1})]
\]

If the eigenvalues (Roots) lie inside the unit circle, i.e.,

\[
|\lambda_i| < 1, \ i = 1, 2, \ldots, n
\]

The Kalman Filter is inherently stable providing an appropriate P(0) is chosen and P(k) is maintained as a symmetric and positive definite matrix.

Choice of P(0)

A kalman filter solves the following "Riccati Equation" of LTI systems:
\[P_k = f_{k-1}H_k^T \left[H_k f_k - H_k^T + R_k \right]^{-1} H_k f_{k-1} \]

where
\[f_{k-1} = \phi_{k-1} P_{k-1} \phi_{k-1}^T + \Gamma_{w_{k-1}} \Gamma_{w_{k-1}} \]

Stable solutions are dependant on \(P(0) \) for example.

Kalman Filtering, Grewal & Andrews, Prentice-Hall, 1993
Chapter

Hence, selection of an improper initial value can lead to blow-up of a Kalman filter. For a continuous-time LTI system, we can, generally, estimate the initial covariance \(P(0) \) and use it as \(P(\infty) \).

Practical Considerations

*** Prefiltering can sometimes help yield better results. Particularly if the system "dynamites" are "slow" as compared to the sampling rate.

*** Detect anomalous sensor data before passing it to the Kalman filter.

*** Test for asymptotic stability/convergence could check the trace of \(P_{cov} \). If trace of \(P_{cov} \) continues to decrease then \(P_{cov} \) is most likely converging.
*** Nonconvergence of P_{cov} can be due to

** Roundoff errors (use double precision, or reduce # states)

** Unstable system (not kalman filter)

** Nonobservability of states

** Bad Data (need bad data detector)

** Mismodeling

* Unmodeled state variables

* Trick kalman filter by adding another state as process noise

* Do a frequency analysis of $z_k - \hat{z}_k$ may indicate an unmodeled state

* Unmodeled process noise

*** Suboptimal Filters

** Reduce model complexity and/or number of states

** Linearized kalman filter

** Extended kalman filter
** Use constant $\hat{\mathbf{k}}$

** Prefiltering

** Use frequency domain to obtain a linear model

** Engineering insight. Observe eigenvalues (poles)

** Compare suboptimal simulations with "Full" model simulations

Implementation Considerations

**** Kalman filter iteratively solves the "Riccati Equation". Round-off and finite precision can result in P_{cov} variances that are negative - A theoretical impossibility. Force P_{cov} variances to be greater than zero, check the Kalman filter state estimates for reasonableness, check the input to the kalman filter and report that an error condition has occurred.

**** If it is an ill-conditioned problem, then the solution is too sensitive to input data. Example, matrix, P, is close to being singular - a good measure is $\det[P]$. In this case "Tweak" the model or use a suboptimal approach.

Condition number of a matrix, $\text{cond}(P)$ indicates how close the $\det[P]$ is to zero.

$$ 1 \leq \text{cond}(P) \leq \infty $$

$$ \text{cond}(P) = \| P^{-1} \| \| P \| $$

or

$$ \text{cond}(P) = \| P^+ \| \| P \| $$

if A is singular or nonsquare (P^+ is the Pseudo Inverse)

or

$$ \text{cond}(P) = \frac{\max_j |\lambda_j(P)|}{\max_i |\lambda_i(P)|} $$

if square.

**** Of factorization methods Bierman UD factorization is one of the more stable and efficient algorithms to keep P_{cov} symmetric.

$$ P_{cov} = UDU^T $$

referred to as a "Square Root Filter", but is not used.

\[
\mathbf{P} = \left[\mathbf{U} \sqrt{\mathbf{D}} \right] \left[\mathbf{U} \sqrt{\mathbf{D}} \right]^T
\]

However, which is why it is wrongly referred to as a "Square Root Factorization".

\[\mathbf{P}_{\text{cov}} = \mathbf{U} \mathbf{D} \mathbf{U}^T \]

is not likely to be indefinite even in the presence of round-off error, by updating only \(U \) and \(D \).

Kalman Filtering, Grewal & Andrews, Prentice-Hall, 1993

Partial UD factorization of the covariance equations. In a manner similar to the case with Cholesky factors for scalar-valued measurements, the conventional form of the observational update of the covariance matrix:

\[
P(+) = P(-) - \frac{P(-) \mathbf{H}^T \mathbf{H} P(-)}{\mathbf{R} + \mathbf{H} P(-) \mathbf{H}^T}
\]

can be partially factored in terms of \(UD \) factors:

\[
P(-) \overset{\text{def}}{=} U(-) D(-) U^T(-) \quad (6.94)
\]

\[
P(+) \overset{\text{def}}{=} U(+) D(+) U^T(+) \quad (6.95)
\]

\[
U(+) D(+) U^T(+) = U(-) D(-) U^T(-)
\]

\[
\begin{align*}
&\quad \quad \frac{U(-) D(-) U^T(-) \mathbf{H} \mathbf{U}(-) D(-) U^T(-)}{\mathbf{R} + \mathbf{H} U(-) D(-) U^T(-) \mathbf{H}^T}
\end{align*}
\]

\[
= \quad U(-) D(-) U^T(-) - \frac{U(-) D(-) \mathbf{v} \mathbf{v}^T D(-) U^T(-)}{\mathbf{R} + \mathbf{v}^T D(-) \mathbf{v}}
\]

\[
= \quad U(-) \left[D(-) - \frac{D(-) \mathbf{v} \mathbf{v}^T D(-)}{\mathbf{R} + \mathbf{v}^T D(-) \mathbf{v}} \right] U^T(-)
\]

(6.97)

(6.98)

where

\[
\mathbf{v} = U^T(-) \mathbf{H}^T
\]

(6.99)

is an \(n \)-vector, and \(n \) is the dimension of the state vector.
If roundoff errors or ill-conditioned covariance matrix produce an indefinite or negative definite matrix or nonsymmetric matrix, we can use Joesph's Method then:

1) Force P_{cov} to be symmetric:

$$P_{\text{cov}} = \frac{1}{2} (P_{\text{cov}} + P_{\text{cov}}^T)$$

2) Then use eigenvalue-eigenvector decomposition (Matlab eig.m):

$$P_{\text{cov}} = T \Lambda T^T$$

\[\text{D} = \text{DIAGONAL OF EIGENVALUES}\]
\[\text{T} = \text{COLUMNS OF EIGENVECTORS}\]

For $i = 1:M$
% REPAIR Δ

if $\delta_{ii} < 0$
 $\% \delta_{ii} \in D_k$
endif

if $\delta_{ii} = 0$
 $\% \delta_{ii} \in \Phi_k$
endif

\[\delta_{ii} = 0;\]

else

\[\delta_{ii} = \epsilon; \% \epsilon > 0\]
3) MDH method:

Force upper-left submatrices (Lenoing Principal Minors) determinants to be \(\geq 0 \). Distributes changes along last column and row of submatrix being evaluated.

EXAMPLE:

\[
D = \begin{bmatrix}
 p_{11} & p_{12} \\
 p_{21} & p_{22}
\end{bmatrix};
\]

\(p_{22} = p_{12} \)

Upper-left submatrices:

For \(i = 1 : M \),

\[
\text{if } (p_{ii} \leq 0) \quad \text{Repair diagonal}
\]

\[
\text{if } (p_{ij} = 0) \quad p_{ij} = 0
\]

\[
\text{if } (p_{ii} = 0) \quad p_{ii} = 0
\]
else

\[\hat{p}_{ii} = \varepsilon \]

end

end

end

if \(P_{12} = 0 \)

\[P_{12} = 0; \hat{p}_{21} = 0; \]

else

if \(\text{det}(P) < 0 \)

\[P_{12} = P_{12}^*; \hat{p}_{21} = \hat{p}_{21}^*; \]

else

\[\text{det} [P_{11} P_{22}] = P_{11} P_{22} - P_{12}^2 \]

\[\geq \sqrt{P_{11} P_{22} - \varepsilon} \]

\[P_{12} = \sqrt{P_{11} P_{22} - \varepsilon} \]

end

end

**** Computational delay

The Kalman Filter provides and for the next iteration. If the computational delay, \(d \), is known, interpolation can be used:

\[\hat{X}_{k+d} = d(\hat{X}_{k+d} - \hat{X}_k) + \hat{X}_k \]
where $0 < d \leq 1$

However, most just use \hat{X}_{k+1} to output to the system that uses the state estimate.

**** Incorrect R_k

If the measurement noise matrix, R_k, is incorrect, suboptimal estimates will be generated by the Kalman Filter.

**** Incorrect Q_k

If the process noise matrix, Q_k, is incorrect, the Kalman Filter State Estimates will be suboptimal, an incorrect Q_k will, in general, result in a larger negative impact on the Kalman Filter results than an incorrect R_k.