ORTHONORMALIZATION

- X IS NORMALIZED IF $\|X\|_2 = 1$ OR EQUIV. $X^\top X = 1$

- x_i, x_j ARE ORTHOGONAL IF $x_i^\top x_j = 0$
 AND ORTHONORMAL IF $\|x_i\|_2 = 1$ AND $\|x_j\|_2 = 1$

- ANY LINEAR SET OF INDEPENDENT VECTORS CAN BE MADE INTO AN ORTHONORMAL SET.

- THE "SCHMIDT ORTHONORMALIZATION PROCEDURE" IS ONE SUCH PROCEDURE.

- GIVEN $A \Rightarrow A_{\text{on}}$ (ORTHONORMALIZED)

 $A_{\text{GRAMIAN}} = A_{\text{on}}^\top A_{\text{on}} = I_{\text{mxm}}$ (MxM IDENTITY MATRIX)

 (Note: Gramian of $A = A^\top A \neq I_{\text{mxm}}$)

- IF $\det A_{\text{GRAMIAN}} = \det |A^\top A| \neq 0$, THE SET OF VECTORS THAT MAKE UP A
 ARE LINEARLY INDEPENDENT AND CAN BE USED AS A BASIS WHERE $\text{DIM (RANGE)} = \text{DIM (SPACE)}$
 = NUMBER OF BASIS VECTORS (COORDINATES).
orthnormex
A =
 1 1 1
 1 2 3
 1 3 2

rankA= rank(A)
rankA = 3

Gramian_A= A'*A
Gramian_A =
 3 6 6
 6 14 13
 6 13 14

detGrmA= det(Gramian_A)
detGrmA = 9

Aon= orthonormal(A) (A FUNCTION CREATED BY PROF. HELLER)
Aon =
 0.5774 -0.7071 -0.4082
 0.5774 0.0000 0.8165
 0.5774 0.7071 -0.4082
% orthonormal.m, Prof. M. Heller
% function aon= orthonormal(a)
% Schmidt Orthonormalization of a matrix
function aon= orthonormal(a)
[r,c]=size(a);
aon=[]; qpast=zeros(r,1); sumqeq=zeros(r,1);
for j= 1:c
 e= a(:,j);
 sumqeq= sumqeq + (qpast'*e).*qpast;
 u= e - sumqeq;
 q= u./norm(u,2);
 aon(1:r,j)= q;
 qpast=q;
end

Gramian_Aon= Aon'*Aon
Gramian_Aon =
 1.0000 0.0000 0.0000
 0.0000 1.0000 -0.0000
 0.0000 -0.0000 1.0000

Gramian_Aon2= Aon2'*Aon2
Gramian_Aon2 =
 1.0000 -0.0000 -0.0000
-0.0000 1.0000 -0.0000
-0.0000 -0.0000 1.0000
LINEAR ALGEBRAIC EQUATIONS

Given \(Ax = y \), \(A \in \mathbb{R}^{m \times n}, \ x \in \mathbb{R}^{n}, \ y \in \mathbb{R}^{m} \)

We have \(m \) equations and \(n \) unknowns.

Definitions

1. If \(Ax = 0 \), \(x \) is a "null vector" of \(A \)
2. "Null space" contains all null vectors.
3. \(\text{nullity}(A) = \# \text{Col} \setminus \text{rank}(A) \).

Theorem 3.1

Given \(Ax = y \), a solution \(x \) exists iff \(\text{rank}(A) = m \) (full row rank).

Theorem 3.2

Given \(Ax = y \), the solution \(x \) is unique, iff \(\text{rank}(A) = n \) (full column rank).

If \(\text{nullity}(A) = m - \text{rank}(A) > 0 \), then there are an \(\infty \) number of solutions not unique

\[x = x^0 + N\alpha \] where \(\alpha \) is any vector, \(x^0 \in \mathbb{R}^n \), and \(N \) is a basis matrix of the null space of \(A \) and \(x^0 \) is a solution. Also,

\[A(x - x^0) = 0 \Rightarrow (x - x^0) \text{ is in the null space} \]
A =
 0 1 1 2
 1 2 3 4
 2 0 2 0

[m,n] = size(A)
m = 3
n = 4

rankA = rank(A)
rankA = 2

Gramian_A = A'*A
Gramian_A =
 5 2 7 4
 2 5 7 10
 7 7 14 14
 4 10 14 20

detGrmA = det(Gramian_A)
detGrmA = 0

N = null(A)
N =
 0.4234 -0.5247
 0.7808 0.4567
 -0.4234 0.5247
 -0.1787 -0.4907

nullityA = n - rankA
nullityA = 2

y = [-4 -8 0]'
y =
 -4
 -8
 0

xs2 = A\y

Warning: Rank deficient, rank = 2 tol = 3.9721e-015.
> In C:\MDH_Toolbox\EEE241\example3_3.m at line 14
\[\text{xs2} = \\
0 \\
0 \\
0 \\
-2 \]

\[A^{*}\text{xs2} \]
\[\text{ans} = \\
-4 \\
-8 \\
0 \]

\[\text{xs} = \text{pinv}(A)^{*}y \]
\[\text{xs} = \\
0.3636 \\
-0.7273 \\
-0.3636 \\
-1.4545 \]

\[A^{*}\text{xs} \]
\[\text{ans} = \\
-4.0000 \\
-8.0000 \\
0.0000 \]

\[\text{alpha} = \text{ones} (\text{nullity}A,1) \ % [1;1] \]
\[\text{alpha} = \\
1 \\
1 \]

\[\text{xp} = \text{xs} - N^{*}\text{alpha} \]
\[\text{xp} = \\
0.4650 \\
-1.9648 \\
-0.4650 \\
-0.7851 \]

\% Text solution
\[\text{xp2} = [0 \ -4 \ 0 \ 0]' \]
\[A^{*}\text{xp2} \]
\[\text{ans} = \\
-4 \\
-8 \\
0 \]
% Find an alpha set
% Xs = Xp2 + N*alpha2
alpha2 = pinv(N)*(xs - xp2)
alpha2 =
 3.1230
 1.8269

Xs = xp2 + N*alpha2
\% CHECK
Xs =
 0.3636
 -0.7273
 -0.3636
 -1.4545

echo off
»