The T-shaped bracket shown is supported by a small wheel at \(E \) and pegs at \(C \) and \(D \). Neglecting the effect of friction, determine the reactions at \(C \), \(D \), and \(E \) when \(\theta = 30^\circ \).

1. Draw a free-body diagram of the body. This diagram shows the body and all the forces acting on it.
2. Write equilibrium equations and solve for the unknowns.
For two-dimensional structure the three equations might be:
\[\sum F_x = 0 \quad \sum F_y = 0 \quad \sum M_O = 0 \]
where \(O \) is an arbitrary point in the plane of the structure
or
\[\sum F_x = 0 \quad \sum M_A = 0 \quad \sum M_B = 0 \]
where point \(B \) is such that line \(AB \) is not parallel to the \(y \) axis
or
\[\sum M_A = 0 \quad \sum M_B = 0 \quad \sum M_C = 0 \]
where the points \(A, B, \) and \(C \) do not lie in a straight line.
Write equilibrium equations and solve for the unknowns.

\[\sum F_y = 0: \quad E \cos 30^\circ - 20 - 40 = 0 \]

\[E = \frac{60 \text{ lb}}{\cos 30^\circ} = 69.28 \text{ lb} \]

\[E = 69.3 \text{ lb} \Delta 60^\circ \]

\[\sum M_D = 0: \]

\[(20 \text{ lb})(4 \text{ in}) - (40 \text{ lb})(4 \text{ in}) - C(3 \text{ in}) + E \sin 30^\circ (3 \text{ in}) = 0 \]

\[-80 - 3C + 69.28(0.5)(3) = 0 \]

\[C = 7.974 \text{ lb} \]

\[C = 7.97 \text{ lb} \rightarrow \]
\[\sum F_x = 0: \]

\[E \sin 30^\circ + C - D = 0 \]

\[(69.28 \text{ lb})(0.5) + 7.974 \text{ lb} - D = 0 \]

\[D = 42.6 \text{ lb} \]