PROBLEM 3.10

The tailgate of a car is supported by the hydraulic lift \(BC \). If the lift exerts a 125-N force directed along its center line on the ball and socket at \(B \), determine the moment of the force about \(A \).

SOLUTION

First note \(d_{CB} = \sqrt{(344 \text{ mm})^2 + (152.4 \text{ mm})^2} = 376.25 \text{ mm} \)

Then \(\cos \theta = \frac{344 \text{ mm}}{376.25 \text{ mm}} \quad \sin \theta = \frac{152.4 \text{ mm}}{376.25 \text{ mm}} \)

and \(F_{CB} = (F_{CB} \cos \theta)i - (F_{CB} \sin \theta)j \)

\[= \frac{125 \text{ N}}{376.25 \text{ mm}} [(344 \text{ mm})i + (152.4 \text{ mm})j] \]

Now \(\mathbf{M}_A = \mathbf{r}_{BiA} \times \mathbf{F}_{CB} \)

where \(\mathbf{r}_{BiA} = (410 \text{ mm})i - (87.6 \text{ mm})j \)

Then \(\mathbf{M}_A = [(410 \text{ mm})i - (87.6 \text{ mm})j] \times \frac{125 \text{ N}}{376.25} (344i - 152.4j) \)

\[= (30.770 \text{ N} \cdot \text{mm})k \]

\[= (30.770 \text{ N} \cdot \text{m})k \]

or \(\mathbf{M}_A = 30.8 \text{ N} \cdot \text{m} \)
PROBLEM 3.49

To lift a heavy crate, a man uses a block and tackle attached to the bottom of an I-beam at hook B. Knowing that the moments about the y and z axes of the force exerted at B by portion AB of the rope are, respectively, 100 lb-ft and -400 lb-ft, determine the distance \(a \).

\[\text{SOLUTION} \]

Based on the following:

\[\mathbf{M}_O = \mathbf{r}_{AO} \times \mathbf{T}_{BA} \]

where

\[\mathbf{M}_O = M_x \mathbf{i} + M_y \mathbf{j} + M_z \mathbf{k} \]

\[= M_x \mathbf{i} + \left(100 \text{ lb-ft} \right) \mathbf{j} - \left(400 \text{ lb-ft} \right) \mathbf{k} \]

\[\mathbf{r}_{AO} = (6 \text{ ft}) \mathbf{i} + (4 \text{ ft}) \mathbf{j} \]

\[\mathbf{T}_{BA} = \lambda_{BA} \mathbf{T}_{BA} \]

\[= \frac{(6 \text{ ft}) \mathbf{i} - (12 \text{ ft}) \mathbf{j} - (a) \mathbf{k}}{d_{BA}} \mathbf{T}_{BA} \]

\[= \frac{T_{BA}}{d_{BA}} \left[-4a \mathbf{i} + (6a) \mathbf{j} - (96) \mathbf{k} \right] \]

\[\therefore M_x \mathbf{i} + 100 \mathbf{j} - 400 \mathbf{k} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 6 & 4 & 0 \\ 6 & -12 & -d_{BA} \end{vmatrix} \mathbf{T}_{BA} \]

From j-coefficient:

\[100d_{AB} = 6aT_{BA} \quad \text{or} \quad T_{BA} = \frac{100}{6a}d_{BA} \quad (1) \]

From k-coefficient:

\[-400d_{AB} = -96T_{BA} \quad \text{or} \quad T_{BA} = \frac{400}{96}d_{BA} \quad (2) \]

Equating Equations (1) and (2) yields

\[a = \frac{100(96)}{6(400)} \]

or \(a = 4.00 \text{ ft} \).
PROBLEM 3.69

A couple \(M \) of magnitude 10 lb-ft is applied to the handle of a screwdriver to tighten a screw into a block of wood. Determine the magnitudes of the two smallest horizontal forces that are equivalent to \(M \) if they are applied (a) at corners \(A \) and \(D \), (b) at corners \(B \) and \(C \), (c) anywhere on the block.

SOLUTION

(a) Have

\[
M = Pd
\]

or

\[
10 \text{ lb-ft} = P(10 \text{ in.}) \left(\frac{1 \text{ ft}}{12 \text{ in.}} \right)
\]

\[\therefore P = 12 \text{ lb} \quad \text{or} \quad P_{\min} = 12.00 \text{ lb} \]

(b) Have

\[
d_{BC} = \sqrt{(BE)^2 + (EC)^2}
\]

\[= \sqrt{(10 \text{ in.})^2 + (6 \text{ in.})^2} = 11.6619 \text{ in.} \]

\[
M = Pd
\]

\[
10 \text{ lb-ft} = P(11.6619 \text{ in.}) \left(\frac{1 \text{ ft}}{12 \text{ in.}} \right)
\]

\[P = 10.2899 \text{ lb} \quad \text{or} \quad P = 10.29 \text{ lb} \]

(c) Have

\[
d_{AC} = \sqrt{(AD)^2 + (DC)^2}
\]

\[= \sqrt{(10 \text{ in.})^2 + (16 \text{ in.})^2} = 2\sqrt{89} \text{ in.} \]

\[
M = Pd_{AC}
\]

\[
10 \text{ lb-ft} = P(2\sqrt{89} \text{ in.}) \left(\frac{1 \text{ ft}}{12 \text{ in.}} \right)
\]

\[P = 6.3600 \text{ lb} \quad \text{or} \quad P = 6.36 \text{ lb} \]
PROBLEM 3.84

Three workers trying to move a 3 x 3 x 4-ft crate apply to the crate the three horizontal forces shown. (a) If $P = 60$ lb, replace the three forces with an equivalent force-couple system at A. (b) Replace the force-couple system of part a with a single force, and determine where it should be applied to side AB. (c) Determine the magnitude of P so that the three forces can be replaced with a single equivalent force applied at B.

SOLUTION

(a) Based on

\[\sum F_x: \quad -50 \text{ lb} + 50 \text{ lb} + 60 \text{ lb} = F_A \]

\[F_A = 60 \text{ lb} \]

or $F_A = (60.0 \text{ lb})\hat{k}$

Based on

\[\sum M_A: \quad (50 \text{ lb})(2 \text{ ft}) - (50 \text{ lb})(0.6 \text{ ft}) = M_A \]

\[M_A = 70 \text{ lb}\cdot\text{ft} \]

or $M_A = (70.0 \text{ lb}\cdot\text{ft})\hat{j}$

(b) Based on

\[\sum F_x: \quad -50 \text{ lb} + 50 \text{ lb} + 60 \text{ lb} = F \]

\[F = 60 \text{ lb} \]

or $F = (60.0 \text{ lb})\hat{k}$

Based on

\[\sum M_A: \quad 70 \text{ lb}\cdot\text{ft} = 60 \text{ lb}(x) \]

\[x = 1.16667 \text{ ft} \]

or $x = 1.167$ ft from A along AB

(c) Based on

\[\sum M_B: \quad -(50 \text{ lb})(1 \text{ ft}) + (50 \text{ lb})(2.4 \text{ ft}) - P(3 \text{ ft}) = R(0) \]

\[P = \frac{70}{3} = 23.333 \text{ lb} \]

or $P = 23.3$ lb