The uniform rod AB of weight W is released from rest when $\beta = 70^\circ$. Assuming that the friction force is zero between end A and the surface, determine immediately after release (a) the angular acceleration of the rod, (b) the acceleration of the mass center of the rod, (c) the reaction at A.

Solving Problems on Your Own

1. **Kinematics:** Express the acceleration of the center of mass of the body, and the angular acceleration.

2. **Kinetics:** Draw a free body diagram showing the applied forces and an effective force diagram showing the vector ma or its components and the couple $\vec{I} \alpha$.

3. **Write three equations of motion:** Three equations of motion can be obtained by equating the x components, y components, and moments about an arbitrary point.
Problem 16.158 Solution

Kinematics:

\[\omega = 0 \]

\[\beta = \alpha \sin 70^\circ \]

\[\omega = 0 \]

\[(a_{GA})_r = \alpha r_{GA} = \alpha \frac{L}{2} \]

\[a_G = a_A + a_{GA} \]

\[a_G = -a_A \mathbf{i} + \alpha \frac{L}{2} \sin 70^\circ \mathbf{i} - \alpha \frac{L}{2} \cos 70^\circ \mathbf{j} \]

\[a_G = (-a_A + \alpha \frac{L}{2} \sin 70^\circ) \mathbf{i} - \alpha \frac{L}{2} \cos 70^\circ \mathbf{j} \]
Problem 16.158 Solution

Kinetics; draw a free body diagram.

\[\ddot{\alpha} = \frac{1}{12} mL^2 \alpha \]

\[m a_{Gx} = m (-a_A + \alpha \frac{L}{2} \sin 70^\circ) \]

\[m a_{Gy} = -m \alpha \frac{L}{2} \cos 70^\circ \]

Write equations of motion.

Moments about point \(P \) \((+ \beta)\):

\[mg \left(\frac{L}{2} \cos 70^\circ \right) = m \alpha \frac{L}{2} \cos 70^\circ \left(\frac{L}{2} \cos 70^\circ \right) + \frac{1}{12} mL^2 \alpha \]

\[\alpha = \frac{6 g \cos 70^\circ}{L \left[1 + 3 (\cos 70^\circ)^2 \right]} \]

\[\alpha = 1.519 \ (g/L) \]
Problem 16.158 Solution

(b) The acceleration of the mass center:
\[\sum F_x = m a_x: \quad 0 = m (-a_A + \alpha \frac{L}{2} \sin 70^\circ) \]
\[a_A = \alpha \frac{L}{2} \sin 70^\circ = 1.519 \frac{L}{2} \frac{g}{L} \sin 70^\circ = 0.760 \text{ g} \]
\[a_G = (-a_A + \alpha \frac{L}{2} \sin 70^\circ) \hat{i} - \alpha \frac{L}{2} \cos 70^\circ \hat{j} \]
Substitute for \(a_A \) and \(\alpha \):
\[a_G = 0 \hat{i} - 0.260 \text{ g} \hat{j} \]

(b) The reaction at A:
\[\sum F_y = m a_y: \quad R_A - mg = - m \alpha \frac{L}{2} \cos 70^\circ \]
\[R_A = mg - m \alpha \frac{L}{2} \cos 70^\circ \]
Substitute for \(\alpha \):
\[R_A = 0.740 \text{ mg} \]