Rod BC of length 24 in. is connected by ball-and-socket joints to a rotating arm AB and to a collar C that slides on the fixed rod DE. Knowing that length of arm AB is 4 in. and that it rotates at a constant rate \(\omega_1 = 10 \text{ rad/s} \), determine the velocity of collar C when \(\theta = 90^\circ \).

Solving Problems on Your Own

1. **Determine velocities in a body rotating about a fixed axis:**
 In vector form, the velocity of a point in the body is given by:
 \[
 \mathbf{v} = \mathbf{\omega} \times \mathbf{r}
 \]
 Where \(\mathbf{v} \), \(\mathbf{\omega} \), and \(\mathbf{r} \) are the velocity of the point, the angular velocity of the body, and the position vector from the axis to the point.
2. Determine velocities in general motion of a rigid body

\[\mathbf{v}_B = \mathbf{v}_A + \mathbf{\omega} \times \mathbf{r}_{B/A} \]

Where \(\mathbf{v}_B \) is the velocity of point B, \(\mathbf{v}_A \) is the (known) velocity of point A, \(\mathbf{\omega} \) is the angular velocity of the body with respect to a fixed frame of reference, and \(\mathbf{r}_{B/A} \) is the position vector of B relative to A.

Problem 15.256

Solving Problems on Your Own

Rod BC of length 24 in. is connected by ball-and-socket joints to a rotating arm AB and to a collar C that slides on the fixed rod DE. Knowing that length of arm AB is 4 in. and that it rotates at a constant rate \(\omega_1 = 10 \text{ rad/s} \), determine the velocity of collar C when \(\theta = 90^\circ \).

Problem 15.256 Solution

Determine velocities in a body rotating about a fix axis.

Determine the velocity of point B when \(\theta = 90^\circ \):

\[\mathbf{\omega}_1 = 10 \mathbf{k} \text{ rad/s} \]
\[\mathbf{r}_{B/A} = -4 \mathbf{j} \text{ in} \]
\[\mathbf{v}_B = \mathbf{\omega}_1 \times \mathbf{r}_{B/A} \]
\[\mathbf{v}_B = 10 \mathbf{k} \times (-4 \mathbf{j}) \]
\[\mathbf{v}_B = (-40 \text{ in/s}) \mathbf{i} \]
Determine velocities in general motion of a rigid body.

Consider rod BC:

\[v_B = (40 \text{ in/s}) \mathbf{i} \]
\[v_C = v_C \mathbf{k} \]
\[\omega = \omega_x \mathbf{i} + \omega_y \mathbf{j} + \omega_z \mathbf{k} \]
\[r_{CB} = 4 \mathbf{i} - 12 \mathbf{j} + 20.4 \mathbf{k} \]

\[v_C = \mathbf{v}_B + \omega \times r_{CB} \]
\[v_C \mathbf{k} = (40 \text{ in/s}) \mathbf{i} + \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \omega_x & \omega_y & \omega_z \\ 4 & -12 & 20.4 \end{vmatrix} \]

\[v_C \mathbf{k} = (40) \mathbf{i} + (20.4 \omega_y + 12 \omega_z) \mathbf{i} + (-20.4 \omega_x + 4 \omega_z) \mathbf{j} + (-12 \omega_x - 4 \omega_y) \mathbf{k} \]

Equate coefficients of \(i, j, k \):

\[0 = 40 + 20.4 \omega_y + 12 \omega_z \]
\[0 = -20.4 \omega_x + 4 \omega_z \]
\[v_C = -12 \omega_x - 4 \omega_y \]

Solve for \(v_C \): (First eliminate \(\omega_z \) and then eliminate \(3 \omega_x + \omega_y \).)

\[v_C = 7.84 \text{ in/s} \]

\[v_C = 7.84 \mathbf{k} \text{ in/s} \]