The ends of a chain lie in piles at A and C. When given an initial speed v, the chain keeps moving freely at that speed over the pulley at B. Neglecting friction, determine the required value of h.

Problem 14.114
Solving Problems on Your Own

The ends of a chain lie in piles at A and C. When given an initial speed v, the chain keeps moving freely at that speed over the pulley at B. Neglecting friction, determine the required value of h.

The motion of a *variable system of particles*, i.e. a system which is continually *gaining or losing particles* or doing both at the same time involves (1) *steady streams of particles* and (2) *systems gaining or losing mass*.

To solve problems involving a variable system of particles, the principle of impulse and momentum is used.
To solve problems involving a variable system of particles, the principle of impulse and momentum is used.

We apply the principle of impulse and momentum to the portion of the chain of mass \(m \) in motion at \(t + \Delta t \). Let \(L \) be the length and \(m \) be the mass of the portion of the chain in motion at \(t + \Delta t \). Of this portion of chain, an element at \(A \) of length \(\Delta x \) and mass \(\Delta m = (m/L)\Delta x \) is not in motion at time \(t \). (The extra element at \(C \) is not part of the system considered here.)
Equating moments about O:

$$+ \quad r(m - \Delta m)v + rmg(h/L)\Delta t = rm(v + \Delta v)$$

$$-(\Delta m)v + mg(h/L)\Delta t = m(\Delta v)$$

Substituting $\Delta m = (m/L)\Delta x$ and dividing by $(m/L)\Delta t$

$$-v \frac{\Delta x}{\Delta t} + gh = L \frac{\Delta v}{\Delta t}$$
Letting $\Delta t \rightarrow 0$, and noting that $(dx/dt) = v$,

$$gh - v^2 = L \frac{dv}{dt}$$

If the chain is to keep moving at its initial speed, $dv/dt = 0$, and

$$h = \frac{v^2}{g}$$