HW#3 12-107, 117, 133, 141, 12-152, 163

Problem 12–107

The car travels along the curve having a radius of \(R \). If its speed is uniformly increased from \(v_1 \) to \(v_2 \) in time \(t \), determine the magnitude of its acceleration at the instant its speed is \(v_3 \).

Given:

\[
v_1 = 15 \, \text{m/s} \quad t = 3 \, \text{s}
\]

\[
v_2 = 27 \, \text{m/s} \quad R = 300 \, \text{m}
\]

\[
v_3 = 20 \, \text{m/s}
\]

Solution:

\[
a_t = \frac{v_2 - v_1}{t} \quad a_n = \frac{v_3^2}{R} \quad a = \sqrt{a_t^2 + a_n^2} \quad a = 4.22 \, \text{m/s}^2
\]
Problem 12–117

Cars move around the “traffic circle” which is in the shape of an ellipse. If the speed limit is posted at \(v \), determine the maximum acceleration experienced by the passengers.

Given:

\[
\begin{align*}
v & = 60 \text{ km/hr} \\
a & = 60 \text{ m} \\
b & = 40 \text{ m}
\end{align*}
\]

Solution:

Maximum acceleration occurs where the radius of curvature is the smallest. In this case that happens when \(y = 0 \).

\[
\begin{align*}
x(y) &= a \sqrt{1 - \left(\frac{y}{b}\right)^2} \\
x'(y) &= \frac{d}{dy} x(y) \\
x''(y) &= \frac{d}{dy} x'(y) \\
ρ(y) &= \frac{1 + x'(y)^2}{x''(y)} \\
ρ_{\min} &= ρ(0m) \\
ρ_{\min} &= 26.667 \text{ m} \\
a_{\max} &= \frac{v^2}{ρ_{\min}} \\
a_{\max} &= 10.42 \text{ m/s}^2
\end{align*}
\]
Problem 12-133

The truck travels at speed \(v_0 \) along a circular road that has radius \(\rho \). For a short distance from \(s = 0 \), its speed is then increased by \(\frac{dv}{dr} = bs \). Determine its speed and the magnitude of its acceleration when it has moved a distance \(s_I \).

Given:

\[
v_0 = 4 \text{ m/s} \]
\[
\rho = 50 \text{ m}
\]
\[
b = \frac{0.05}{s^2}
\]
\[
s_I = 10 \text{ m}
\]

Solution:

\[
a_t = v \left(\frac{d}{ds} v \right) = bs
\]
\[
\int_{v_0}^{v_I} v \, dv = \int_0^{s_I} b \, s \, ds
\]
\[
\frac{v_I^2}{2} - \frac{v_0^2}{2} = \frac{bs_I^2}{2}
\]

\[
v_I = \sqrt{v_0^2 + b s_I^2}
\]
\[
v_I = 4.58 \text{ m/s}
\]

\[
a_t = bs_I
\]
\[
a_n = \frac{v_I^2}{\rho}
\]
\[
a = \sqrt{a_t^2 + a_n^2}
\]
\[
a = 0.653 \text{ m/s^2}
\]
Problem 12-141

If a particle’s position is described by the polar coordinates \(r = a \sin b \theta \) and \(\theta = ct \), determine the radial and tangential components of its velocity and acceleration when \(t = t_f \).

Given: \(a = 2 \text{ m} \) \hspace{1cm} \(b = 2 \text{ rad} \) \hspace{1cm} \(c = 4 \frac{\text{rad}}{\text{s}} \) \hspace{1cm} \(t_f = 1 \text{ s} \)

Solution: \(t = t_f \)

\[
\begin{align*}
 r &= (a) \sin(b \cdot c \cdot t) \\
 r' &= a b c \cos(b \cdot c \cdot t) \\
 r'' &= -a b^2 c^2 \sin(b \cdot c \cdot t) \\
 \theta &= c t \\
 \theta' &= c \\
 \theta'' &= 0 \frac{\text{rad}}{\text{s}^2}
\end{align*}
\]

\[
\begin{align*}
 v_r &= r' \\
 v_r &= 2.328 \frac{\text{m}}{\text{s}}
\end{align*}
\]

\[
\begin{align*}
 v_\theta &= r \theta' \\
 v_\theta &= 7.915 \frac{\text{m}}{\text{s}}
\end{align*}
\]

\[
\begin{align*}
 a_r &= r'' - r \theta'^2 \\
 a_r &= -158.3 \frac{\text{m}}{\text{s}^2}
\end{align*}
\]

\[
\begin{align*}
 a_\theta &= r \theta' + 2r' \theta' \\
 a_\theta &= -18.624 \frac{\text{m}}{\text{s}^2}
\end{align*}
\]
Problem 12-152

At the instant shown, the watersprinkler is rotating with an angular speed θ and an angular acceleration θ'. If the nozzle lies in the vertical plane and water is flowing through it at a constant rate r', determine the magnitudes of the velocity and acceleration of a water particle as it exits the open end, r.

Given:

$\theta = 2 \text{ rad/s}$ \hspace{1cm} $\theta' = 3 \text{ rad/s}^2$

$r' = 3 \text{ m/s}$ \hspace{1cm} $r = 0.2 \text{ m}$

Solution:

$v = \sqrt{r^2 + (r\theta)^2}$ \hspace{1cm} $v = 3.027 \text{ m/s}$

$a = \sqrt{(r\theta')^2 + (r\theta'' + 2r'\theta)^2}$ \hspace{1cm} $a = 12.625 \text{ m/s}^2$
Problem 12–163

For a short time the bucket of the backhoe traces the path of the cardioid \(r = a(1 - \cos \theta) \). Determine the magnitudes of the velocity and acceleration of the bucket at \(\theta = \theta_1 \) if the boom is rotating with an angular velocity \(\theta' \) and an angular acceleration \(\theta'' \) at the instant shown.

Given:
\[
\begin{align*}
 a &= 25 \text{ ft} \quad \theta' = 2 \frac{\text{rad}}{\text{s}} \\
 \theta_1 &= 120 \text{ deg} \quad \theta'' = 0.2 \frac{\text{rad}}{\text{s}^2}
\end{align*}
\]

Solution:

\[
\begin{align*}
 \theta &= \theta_1 \\
 r &= a(1 - \cos(\theta)) \quad r' = a \sin(\theta) \theta' \\
 r'' &= a \sin(\theta) \theta'' + a \cos(\theta) \theta'^2 \\
 v &= \sqrt{r'^2 + (r \theta')^2} \quad \text{\(v = 86.6 \frac{\text{ft}}{\text{s}} \)} \\
 a &= \sqrt{(r'' - r \theta'^2)^2 + (r \theta' + 2r' \theta)^2} \quad \text{\(a = 266 \frac{\text{ft}}{\text{s}^2} \)}
\end{align*}
\]