Problem 1

The path of the robot is shown in figure 1. Our goal is to determine the location of the robot after 10 seconds using different methods:

- integration by hand
- integration using a symbolic toolbox
- using odometry equation (numerical integration)

We have the following information:

\[v = 3 \text{ m/s}, \quad \omega = 0.5 \text{rad/s}, \quad ICC = 6 \text{m} \]
\[\theta_0 = \pi/2, \quad x_0 = 6 \text{m}, \quad y_0 = 0 \text{m} \] \hspace{1cm} (1)

Recall that when both \(\omega \) and \(v \) are constant:

\[x(t) = \int_0^t v \cos(\omega t + \theta_0) + x_0 \] \hspace{1cm} (2)
\[y(t) = \int_0^t v \sin(\omega t + \theta_0) + y_0 \] \hspace{1cm} (3)
\[\theta(t) = \omega t + \theta_0 \] \hspace{1cm} (4)

1) Perform integration by hand to determine the position and the orientation of the robot after 10 seconds.
2) Perform integration using a symbolic toolbox to determine the position and the orientation of the robot after 10 seconds. Hint: to find

\[\int_0^1 \sin(t) dt \] \hspace{1cm} (5)

you can use

\[\text{syms t} \] \hspace{1cm} (6)
\[\text{int(sin(t),0,1)} \] \hspace{1cm} (7)
3) Write code to implement the odometry equations to determine the position and orientation of the robot after 2 seconds. Take a sampling time of $T = 0.01$ s. Recall that the odometry equations can be written as follows:

$$x = x + T * v * \cos(\theta)$$ \hspace{1cm} (8) \\
$$y = y + T * v * \sin(\theta)$$ \hspace{1cm} (9) \\
$$\theta = T * w + \theta$$ \hspace{1cm} (10)

4) Plot the robot's path in the time interval $[0, 10s]$
5) Are your results consistent?

Problem 2

A rotation matrix R is generated by the following rotations:

- 60° about current z_0
- 30° about current y_0
- 90° about current x_0

Find matrix R.

Problem 3

A rotation matrix R is generated by the following rotation:

- 90° about current z_0

Answer the following questions:

1) Without any calculations, what is the equivalent axis (\vec{k}) and its corresponding angle.
2) Use the equations to obtain the equivalent axis (\vec{k}) and its corresponding angle. Does it confirm the result of the previous question?

Problem 4

Suppose frames $o_0x_0y_0z_0$ and $o_1x_1y_1z_1$ are related by rotation matrix:

$$R^0_1 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$ \hspace{1cm} (11)

1) Find R^0_1. You can use Matlab or other numerical tools.
2) Find the rotation axis \vec{k} and the rotation angle θ corresponding to R^0_1.