The Denavit-Hartenberg Convention

The Denavit-Hartenberg (DH) convention was introduced in 1955 by Jacques Denavit and Richard Hartenberg, it became popular only in the 1980’s. It is one of the most popular conventions used to study the kinematics of manipulators. It was introduced to reduce the complexity by selecting the reference frames. Clearly, it is used to represent the relationship between the individual joints and the end effector. Under the DH convention, each homogeneous transformation A_i is represented by a product of four basic transformations as follows

$$A_i = Rot_z, θ_i Trans_z, d_i Trans_x, a_i Rot_x, α_i$$ (1)

where $θ_i, a_i, d_i, α_i$ are the DH parameters associated with link i and joint i. They are called:
- a_i is the link length
- $α_i$ is the link twist
- d_i is the joint offset
- $θ_i$ is the joint angle

Recall that A_i is a function of a single variable q_i that we called the joint variable. This implies that amongst $θ_i, a_i, d_i, α_i$ there is only one variable and the others are constant parameters. The variable is $θ_i$ when we have a revolute joint and d_i when we have a prismatic joint.

A. Reference frame

The way the reference frames are defined plays an important role in the DH convention. The axes are defined as follows:
- z_i is the direction of the joint axis, i.e., the direction of rotation or translation.
- x_i is along the common normal to $z_i−1$ and z_i directed from $z_i−1$ to z_i. The common normal between two lines is the shortest line between them. Thus
 $$x_i = z_i \times z_i−1$$ (2)

x_i is perpendicular to both z_i and $z_i−1$ and intersects with both of them.
- y_i is defined using the right hand rule (RHR).

B. Denavit-Hartenberg parameters

The DH-parameters are defined as follows:
- Joint offset d_i: distance from $z_{i−1}$ to x_i measured along $z_i−1$. d_i is the joint variable if joint i is prismatic (joint i in figure 1).
- Joint angle $θ_i$: angle between $x_{i−1}$ and x_i about $z_{i−1}$. $θ_i$ is the joint variable if joint i is revolute(joint $i−1$ in figure 1).
- Link length a_i: distance between z_i and $z_{i−1}$ along x_i
- Link twist $α_i$: angle between z_i and $z_{i−1}$ about x_i

Figure 1 illustrates the DH-convention and 2 shows the positive direction of rotation.

Example

Find the DH parameters for the planar manipulator of figure 3 and write A_1 and A_2 as a function of these parameters.

Solution

The DH-parameters are
Fig. 3. Example for DH parameters

<table>
<thead>
<tr>
<th>Link</th>
<th>θ</th>
<th>a</th>
<th>d</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>θ_1</td>
<td>a_1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>θ_2</td>
<td>a_2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

From which we get for A_1

$$A_1 = Rot_{z, \theta_1} Trans_{x, a_1} Trans_{x, a_2} Rot_{x, \alpha_1}$$ \hspace{1cm} (3)

with

$$Rot_{z, \theta_1} = \begin{bmatrix} \cos \theta_1 & -\sin \theta_1 & 0 & 0 \\ \sin \theta_1 & \cos \theta_1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$ \hspace{1cm} (4)

$$Trans_{z, d_1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_1 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$ \hspace{1cm} (5)

Since $d_1 = 0$, $Trans_{z, d_1}$ is just the identity matrix.

$$Trans_{x, a_1} = \begin{bmatrix} 1 & 0 & 0 & a_1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$ \hspace{1cm} (6)

$$Rot_{x, \alpha_1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha_1 & \sin \alpha_1 & 0 \\ -\sin \alpha_1 & \cos \alpha_1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$ \hspace{1cm} (7)

Again $Rot_{x, \alpha_1} = I$ since $\alpha_1 = 0$. Now equation (3) becomes

$$A_1 = Rot_{z, \theta_1} Trans_{x, a_1} = \begin{bmatrix} \cos \theta_1 & -\sin \theta_1 & 0 & 0 \\ \sin \theta_1 & \cos \theta_1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & a_1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$ \hspace{1cm} (8)

$$A_1 = \begin{bmatrix} \cos \theta_1 & -\sin \theta_1 & 0 & a_1 \cos \theta_1 \\ \sin \theta_1 & \cos \theta_1 & 0 & a_1 \sin \theta_1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$ \hspace{1cm} (9)

The same approach is used to find A_2.

The same approach is used to find A_2.